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o L[: In this review, we emphasize the recent progress achieved in understanding the
=~ behaviour of unstable detonations through the interaction of theoretical, asymp-
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= v testing ground for the more complex ideas and phenomena that occur in several

space dimensions. The linear and nonlinear theories for unstable detonations are
generalized to several space dimensions. A new dedicated numerical method leads
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30 A. Bourlioux and A. J. Majda

to better insight into the physical phenomena of unstable detonations, such as
the nature of the turbulence generated in the wake of the front. Simplified models
derived through asymptotics and comparisons between theoretical and numerical
predictions are stressed throughout this paper.

1. Introduction

The classical theory of von Neumann, Zeldovich, and Déring postulates that
detonation waves are steady travelling waves (ZND waves) with a quasi-one-
dimensional structure consisting of an ordinary fluid dynamic shock followed by
a reaction zone. However, experiments reveal that detonation waves are often
unstable with remarkable transverse wave structures and much larger local pres-
sures than are predicted by the classical ZND theory (Oppenheim 1972; Fickett
& Davis 1979). Understanding such instabilities is important in a wide variety
of contexts involving both safety and enhanced combustion. For example, in a
non-traditional application involving the development of supersonic propulsion
devices, the oblique detonation wave engine has been proposed as an alternative
to the Scramjet concept. In the oblique detonation wave engine, the burning takes
place in oblique overdriven detonations attached to wedge-like surfaces. It is ob-
vious that the stability characteristics of overdriven detonations are important
for the design process.

Two main points of view are emphasized in this review. The first point is the
symbiotic interaction of asymptotics, numerics, and analysis in yielding an im-
proved understanding of detonation instability, The second point is the use of
the simplest model, which involves the inviscid compressible reacting Fuler equa-
tions with an ideal gas law and irreversible Arrhenius kinetics for a single reaction
progress variable. This second point is validated by the fact that a remarkable
range of phenomena for unstable detonations documented in experiments occurs
in the model in a qualitative fashion as we vary a few simple parameters of the
basic ZND wave such as the heat release, activation energy, and overdrive.

In §2, the model and its properties and we also sketch the derivation of a
simpler asymptotic model. The material in §3 provides a self-contained review of
the recent multi-faceted study of detonation instability in the simplest context of
a single space variable, while in §4 and §5 we discuss instabilities in two space
variables. The work in § 5 includes a discussion of a new ‘state of the art’ numerical
method designed specifically for computing detonation instability in several space
dimensions. New insights into the physical mechanisms of detonation instability
which have been achieved with this method are also described in §5. A ‘numerical
test suite’ of benchmark problems for designing numerical methods for unstable
detonations is also introduced, in one space dimension (§3) and in two space
dimensions (§5).

2. Basic theory of ZND waves

In this section we list the basic equations and briefly summarize the elemen-
tary properties of ZND waves which are needed in subsequent sections. We also
review the asymptotic derivation of a qualitative—quantitative model for deto-

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

a
\
\
8 \
i

//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Structure of unstable detonations 31

nation waves in high Mach number combustion. This simplified model provides
elementary insights into the propagation of detonation waves as well as a class of
extremely simple but instructive test problems for numerical methods for com-
puting detonations (see §3 below).

(a) Basic equations

In this review we consider solutions of the Euler equations for inviscid reacting
gas flow so we neglect all dissipation mechanisms. For the chemical interaction
we consider the simplest model. There are only two species present, the reactant
and the product, and the reactant is converted to the product by a one-step irre-
versible chemical reaction governed by Arrhenius kinetics. With these simplifying
assumptions the equations for reacting flow are given by

pi+ V- (pp) =0, (pv),+ V- (pvv)+Vp =0, } 2.1)
(PE) +V - (pvE+wp) =0, (pZ);+V - (pvZ) = —w, '

with (2.2)

T=p/p, w=KpZexp(—E"/T).

In these equations, p, p, T, v, E, respectively, the pressure, density, temper-
ature, velocity, specific energy, and reactant mass fraction. The variables have
been made dimensionless by reference to a fixed constant state. The dimension-
less parameters appearing above are the specific heat ratio, =y, the heat release
parameter, qo, and the activation energy, E*.

(b) ZND waves

The equations in (2.1) have explicit travelling wave profiles consisting of a
precursor ordinary fluid dynamics shock followed by a chemical reaction. These
profiles are the ZND waves and are readily computed by quadrature of a single
nonlinear ordinary differential equation (ODE) different to small caps!! (Fickett
& Davis 1979). Given a fixed constant prestate, there is a minimum speed for
the ZND profile, Doy > 0, the Chapman—-Jouguet velocity, and for every wave
speed D > Dgj, there is a unique ZND profile moving with that wave speed. The
parameter f defined according to :

degree of overdrive f = (D*/D%;) (2.3)

measures the degree of overdrive of the detonation and satisfies f > 1. of a fixed
ZND profile, a natural intrinsic length scale is the half-reaction length scale, the
distance required for half the reactant to be depleted in the ZND wave. We always
use the half-reaction length L,,, of the appropriate ZND wave as the unit length
scale throughout the paper. We also normalize the sound speed in the unburnt
medium to be y/y. With this normalization, the specification of L/, as a length
unit entirely determines the timescale and the normalization of K in the reaction
rate w.

In figures 1 and 2 we illustrate the characteristics of ZND profiles in two exam-
‘ples. In figure 1 we plot the pressure and reactant profiles for a ZND wave with
Et =20,q =2, f = 1.1, v = 1.2; we also graph the profile for ¢*(z) — v?(z)
where ¢(x) is the sound speed and v(z) is the normal velocity. In figure 2, we
plot the same quantities for a ZND wave with E* = 50, ¢qg = 50, f = 1.2,

E=e+qZ+35v°, p=(y—1)pe, }

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. ZND profile with ET = 20, qo = 2, f = 1.1, v = 1.2; pressure P, reactant mass
fraction Z, and c¢*(x) — v*(z), where c*(z) is the square of the sound speed and v(z) is the
normal velocity.

50.7 10 - 9.43
p z | =
)
1.0 0 11 1] 0 |

Figure 2. ZND profile with E* = 50,q0 = 50, f = 1.2,y = 1.2; pressure P, reactant mass
fraction Z, and c(x)® — v(z)?, where ¢*(z) is the square of the sound speed and v(z) is the
normal velocity.

~ = 1.2. Both ZND profiles exhibit the von Neumann spike in the pressure. Such
non-monotone spikes increase the difficulty of numerical computations in reacting
flows as compared with shocks in ordinary compressible flows. We also note that
c2(x) — v?(x) decreases in figure 1 but has an interior maximum in figure 2. This
qualitative difference is very important since it signifies a quantitative difference
in the instability characteristics of the ZND profile in figure 2 versus the one in
figure 1. The profile in figure 1 with lower activation energy and heat release is
stable at small transverse wavelengths while the profile in figure 2 is unstable at
small transverse wavelengths (see §4 below).

(¢) A qualitative—quantitative asymptotic model for detonation waves

Several years ago, one of the authors introduced a qualitative model for dy-
namic combustion with two nonlinear equations which retains the essential inter-
action of nonlinear acoustics and chemistry essential for propagating detonations
(Majda 1981). This simplified model has transparent analogues of the Chapman-
Jouguet theory, ZND waves, some mechanisms of initiation-failure, etc., in an
extremely simple context (see also Majda 1986; Majda & Roytburd 1988). It is
interesting that this model actually arises from the reacting Euler equations in a
distinguished asymptotic limit (Rosales & Majda 1983). In § 3, we illustrate the
use of this model in testing numerical methods for computing detonations. Here
we briefly sketch a derivation of the model and refer the reader to the original
references for the complete details.

Phil. Trans. R. Soc. Lond. A (1995)
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Structure of unstable detonations 33

The model for high Mach number combustion has been derived from the re-
acting compressible Euler equations in (2.1) under the following hypotheses:

(i) The non-dimensional activation energy E™ is high, of order 1/e.

(ii) The non-dimensional heat release o is small gy = ge?.

(iii) The perturbations of the reference state have amplitudes of order € bal-
anced with wave lengths of order e.

The reaction front is described by the equation

Y(x) —t=0.
Using ideas of geometric optics, one can show that ¢(x) should necessarily satisfy
the eikonal equation:
VP = 1.
Near the reaction front appropriate inner asymptotic expansions for the state
variables are introduced:
p=1+4+e€po(0,2)+...
v=1v(0,x)+ev(f,z)+...
T=1+¢€Ip(0,2)+ ...
Z =2y0,x)+€Z1(0,z)+ .. ..

Here 6 is a new scaled variable:

0 = ((x) —1)/e.

Enforcing appropriate solvability conditions, one shows that pg, uo, and T solve
a homogeneous system of equations; therefore these quantities should be propor-
tional to some eigenvector:

(po> ( 1/(y—1) )
v | = VY/(y—-1) | U(z,0),
T 1

where U(z, ) is a scalar function to be determined. We choose the eigenvector
corresponding to propagating acoustic modes. From the next-order perturbation
equations, a compatibility condition is found which yields a differential equation
for U:

UT+b(U2/2)9—qoZg+(A¢)U/2:0 (24)
Here b is a constant and 7 is a parameter on the bicharacteristic rays,
dz
ar Vip(z)

with the initial condition
7=0 at ¢(z)=0.
The model system counsists of (2.4) combined with the equation for Z:
U, +b(U?/2)g — qoZg + (AY)U/2 =0, Zy=K¢(U)Z. (2.5)

In (2.5), ¢ accounts for the chemical kinetics; a typical choice for ¢ is the Arrhe-
nius kinetic function:

é(U) =K exp{ — E*/(U — Uy)}. (2.6)

Phil. Trans. R. Soc. Lond. A (1995)
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34 A. Bourliouz and A. J. Majda

The effects of changing front geometry in multi-dimensions are included in the
model via the term (A)U/2. This term can be expressed through principal
curvatures K; of the reaction front at time 0:

Ay = K;(1+ K;r)™".

For the unidirectional motion of a planar front, the geometric term vanishes. The
model ignores multi-wave interactions of gas dynamics but preserves the chemical
nonlinear wave interaction along the dominant sound wave.

3. Stable and unstable ZND waves in one dimension

In this section we review recent developments in the interaction among the-
ory, asymptotic, and numerical methods in understanding the instability of one-
dimensional detonations. Problems in a single space variable provide important
simplified testing grounds for the more sophisticated numerical and asymptotic
methods needed for studying the more realistic situations involving detonation in-
stability in two or three space variables. With this point of view, recent work has
discovered a surprising number of purely numerical artefacts in solutions gen-
erated by existing numerical methods which are very successful for computing
hydrodynamic shock waves without combustion. This work motivates the need
for some of the new numerical strategies for computing unstable detonations
which have been developed recently and are mentioned below. As reviewed here,
the asymptotic theories play at least two roles in the development of improved
numerical methods:

(i) Providing simplified systems for numerical studies such as those derived in
(2.4), (2.5) through suitable asymptotic methods;

(ii) Yielding new theories for unstable detonation which can be compared with
the results of direct numerical simulations in regimes where there are no ‘exact
solutions’. This provides stringent tests for the validity of numerical methods as
well as these theories.

(a) Linearized stability of ZND waves in one dimension

The theory of linearized stability for ZND waves was pioneered by Erpenbeck
(1962, 1964, 1969). Since the perturbed precursor shock front is also an unknown
(even in a single space dimension), the linearized theory of stability for ZND
waves involves a complex free surface problem for a variable coefficient system
of linear hyperbolic equations. This system is solved by separation of variables
in time, subject to suitable ‘radiation conditions’ in space. When at least one
of the eigensolutions of this problem grow in time, the ZND profile is linearly
unstable; otherwise, the ZND wave is stable. Here, we will not write down the
equations for linearized stability of ZND profiles in a single space dimension; such
equations are written down and developed in §4 a in the context of several space
variables and the situation involving a single space variable is obviously a very
special case. Recently, Lee & Stewart (1990) have made an important contribu-
tion by developing a new shooting method for efficient numerical computation
of the linearized stability theory for a given ZND profile. A careful discussion
of the linearized problem in one dimension, including the ‘radiation conditions’
on eigenmodes, is needed (Lee & Stewart 1990; Bourlioux et al. 1991a,b). One

Phil. Trans. R. Soc. Lond. A (1995)
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Structure of unstable detonations 35

Table 1. Roots for linear instability
(g0 = 50, BT =50, v = 1.2. Roots are in units of tl_/l,z, and an asterisk denotes a stable root.)

number of
unstable
modes  overdrive root 1 root 2 root 3
0 1.8 —0.0536 +10.8362* —0.5846 4 i4.0830* —1.7921 +i6.9913*
0 1.76 —0.0230 +i0.8312* —0.4891 +i4.1346* —1.6277 £i7.0752*
0 1.74 —0.0073 +10.8280* —0.4401 +-i4.1598* —1.5441 4+i7.1250*
1 fo=1.73 0.0000 +i0.8263  —0.4153 +i4.1720* —1.5024 +i7.1506*
1 1.72 0.0087 +1i0.8243  —0.3903 +-i4.1844* —1.4607 +i7.1767*
1 1.70 0.0251 +1i0.8199  —0.3398 4+ i4.2086* —1.3774 +1i7.2292*
1 1.60 0.1120 £1i0.7902  —0.0760 +i4.3213* —0.9543 4 i7.4853"
1 1.58 0.1303 £1i0.7821  —0.0207 +i4.3419* —0.8672 +i7.5341"
2 fi=157 0.1374 +i0.7788 0.0000 +i4.3496  —0.8233 +i7.5581"
2 1.56 0.1491 +1i0.7732 0.0350 +i4.3620  —0.7791 £i7.5819"
2 1.54 0.1682 +i0.7636 0.0915 +i4.3810  —0.6901 +i7.6289"
2 1.50 0.2078 +1i0.7416 0.2065 +i4.4173  —0.5090 +i7.7198*
2 1.42 0.2918 +10.6837 0.4440 +i4.4794  —0.1359 +i7.8893*
2 1.40 0.3140 £+ 10.6657 0.5055 +i4.4926  —0.0406 + i7.9290*
3 f>=1.39 0.3235 +i0.6575 0.5316 +i4.4978 0.0000 + i7.9456
3 1.38 0.3368 + i10.6460 0.5672 +i4.5047 0.0553 +i7.9676
3 1.36 0.3599 +i0.6242 0.6295 + i4.5159 0.1517 4 i8.0049
3 1.30 0.4331 +i0.5433 0.8200 =+ i4.5422 0.4439 +i8.1095
5 1.20 0.5702 + i0.3003 1.5025 +14.5267 1.4244 +i8.3517
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important feature of the numerical method is that the spatial structure of the
eigenmode e, (x) corresponding to an unstable mode is also determined by the
numerical procedure.

Table 1 lists the number of unstable modes for a given ZND profile with Ft =
50, qo = 50, and v = 1.2 as the overdrive, f (defined in 2.3), is varied. We remark
that the number of unstable modes is calculated according to a complex field so
that there are twice as many real-valued unstable modes in the unstable cases.
From table 1 we see that the ZND profile becomes increasingly more unstable as
the overdrive is decreased and that

(A) the ZND profile is linearly stable for f > f; = 1.73 and unstable for f < f;.

The three roots with the largest growth rates for each overdrive are also
recorded in table 1.
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36 A. Bourlioux and A. J. Majda

(b) Numerical computation of stable ZND waves

The simplest task for a numerical scheme for computing detonations is to
capture a stable ZND profile including the non-monotone von Neumann spike in
the pressure profile. The performance of several contemporary ‘shock-capturing’
schemes on such problems has been documented recently (Colella et al. 1986;
Ben-Artzi 1989; LeVeque & Yee 1990; Bourlioux 1991).

(i) Artefact numerical weak detonations

The most surprising behaviour of numerical methods (Colella et al. 1986) is
that numerical artefact precursor weak detonations can emerge on sufficiently
coarse meshes in a time-dependent calculation rather than the stable overdriven
or Chapman-Jouguet detonation. That the weak detonation waves are purely
numerical artefacts follows from the fact that their wave speed depends on the
mesh spacing. Also these meshes are coarse for the reactive Euler equations but
the same mesh spacings yield high-quality resolution for shock capturing for the
compressible Euler equations without chemistry. Thus, the interaction of the
stiff chemical source terms with gas dynamics can produce surprising numerical
artefacts which pollute the computation.

A theory and explanation for these artefact waves is presented in Colella et al.
(1986) within the context of the simplified asymptotic model in (2.4), (2.5). Re-
cently, LeVeque & Yee (1990) have made an important contribution by observing
the same kind of numerical artefact waves moving at the wrong speed for an even
simpler system involving a scalar linear advection equation with a stiff nonlinear
source term. Clearly, one important design consideration for numerical schemes
for calculating detonations is that such numerical artefact precursor weak deto-
nations be eliminated for the grid spacings that are limited by expense in a more
complex calculations.

(ii) Numerical schemes tested on the asymptotic model

The ZND profiles in the simplified asymptotic model in (2.4), (2.5) provide
a simple but instructive class of code validation problems where many different
numerical methods can be compared readily. Table 2 lists the performance of
eight contemporary shock-capturing schemes combined with operator splitting
applied to a test problem for a Chapman-Jouguet profile with prestate zero for the
simplified equations in (2.4), (2.5), (2.6) with b = 1, uo = 0.6, E* = 10, gy = 0.5
(Bourlioux 1991). These calculations were performed on a Ridge computer and
the timings for each method are for piecewise constant initial values run for a fixed
time interval for the solution. The random choice method (RcM) (Chorin 1976),
flux corrected transport method (FcT) (Boris & Book 1973), and the piecewise
parabolic method (pPM) (Colella & Woodward 1984) gave the best overall results
on this simple test problem. In fact, RCM gave a perfect shock speed and only
slightly clipped the von Neumann spike. The scheme ENO4 (Harten et al. 1987)
gave similar results but was significantly more expensive to use.

Several more stringent but elementary one-dimensional test problems involving
initiation and failure within the context of the model as well as for the reactive
Euler equations (Majda & Roytburd 1990; Bourlioux 1991) have also been used
to check numerical performance. The three schemes RCM, FCT, and PPM with
operator splitting gave the best performance on all of these test problems.

Phil. Trans. R. Soc. Lond. A (1995)
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Table 2. Effect of mesh refinement
(E*t=10; Qo=0.5.)

method pts/Lyjs Li(u) clipping shock speed shock spread timing

0.55 3.62% 0.960 0.00 pts 10.1

RCM 2 0.24 2.09% 0.980 0.00 pts 20.2
4 0.12 1.08% 0.988 0.00 pts 40.4

1 1.28 9.58% 0.994 1.34 pts 15.1

FCT 2 0.66 6.51% 0.997 1.37 pts 30.5
0.33 4.44% 0.999 1.38 pts 1:01.6

131 8.54% 0.997 1.54 pts 12.5

PPM 2 0.75 5.58% 0.996 1.63 pts 25.1
4 0.44 3.53% 0.998 1.73 pts 50.4

1 1.31 8.67% 0.994 1.63 pts 12.4

Superbee 2 0.78 5.64% 0.996 1.76 pts 25.1
4 0.44 3.55% 1.000 1.84 pts 50.6

1 1.18 10.88% 0.995 1.62 pts 2:14.0

ENO4 2 0.69 6.96% 0.998 1.73 pts 4:20.3
4 0.41 4.32% 1.000 1.82 pts 8:38.4

1.78 10.98% 0.994 2.39 pts 37.3

ENO2 2 1.05 7.13% 0.999 2.53 pts 1:14.4
0.63 4.60% 0.999 2.69 pts 2:28.1

1.98 10.63% 0.994 2.60 pts 10.2

GOD 2 1.16 7.29% 0.996 2.79 pts 20.5
4 0.69 4.87% 1.000 3.03 pts 40.9

1 2.81 12.72% 0.996 2.96 pts 14.4

TVD 2 1.58 8.28% 1.000 3.11 pts 28.6
4 0.86 5.11% 1.000 3.22 pts 56.9

(¢) Numerical computation of unstable ZND waves

Since most detonation waves which occur in applications are unstable and the
corresponding higher pressures have physical significance, a real computational
challenge is to design high-resolution numerical methods for computing the inter-
actions between the chemical reactions and hydrodynamics for unstable detona-
tions. Fickett & Wood (1966) introduced two important classical test problems
for unstable detonations in a single space variable by considering the instability
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38 A. Bourliouz and A. J. Majda

of ZND waves with ¢o = 50, E* = 50, v = 1.2 and the two overdrives f = 1.6,
1.8. From table 1, the reader can verify that the ZND wave with f = 1.6 is un-
stable with a single mode of growth while at f = 1.8, the ZND wave is stable
but there is one mode with a slow rate of decay. After the first publication of
this test problem, several authors (Mader 1979; Abouseif & Toong 1982; Moen et
al. 1984; Bukiet 1987) have used this test problem in theoretical and numerical
studies; their work involves using extremely fine mesh spacings in one space di-
mension; comparable mesh spacings are not available for simulations in two space
dimensions on even the largest current supercomputers.

Recently, Bourlioux et al. (1991a) investigated the performance of numerical
methods on the unstable and stable one-dimensional detonations of Fickett and
Wood with the following design consideration:

Find a ‘state of the art’ numerical method which generalizes to several

(B) space dimensions and accurately computes the transition to instabil-
ity for overdrives with 1.6 < f < 1.8 with a coarse resolution using
only O(10%) mesh points.

If such a method can be found, then this method provides a new high-resolution
numerical procedure for unstable detonations in two space dimensions where
O(10°) mesh points are available on contemporary supercomputers.

(i) Numerical artefacts for the classical test problem

With the design considerations in (B), the numerical performance of the RCM,
FCT, and PPM methods was studied (Bourlioux et al. 1991a) on the classical
test problem of Fickett & Wood with the relatively coarse resolutions involving
2 pts/Ly 3, 5 pts/Ly/s, 10 pts/L;, three numerical methods was based on their
superior performance in the simpler test problems already described in §3 b (ii). In
figure 3, we give the shock front pressure history for the ‘exact solution’ computed
from a very fine mesh calculation for the unstable overdrive, f = 1.6; clearly, a
regular periodic pulsating mode of instability emerges after a brief time.

For numerical simulations with initial data given by the unperturbed ZND
wave, both the FCT method and the RCM method exhibited dramatic numerical
artefacts as the mesh was refined and these persisted and in some instances were
even exaggerated as the mesh spacing was reduced. Figure 4 gives the shock front
pressure history for the FCT method with the unstable overdrive, f = 1.6. On the
coarsest mesh with 2 pts/L; 5, the ZND wave is computed as a stable detonation
as a purely numerical artefact; the PPM method behaves similarly on this very
coarse mesh. On the middle mesh with 5 pts/L; /., periodic pulsations emerge
with maximum pressures about 10% below the expected value from figure 3.
On the finest mesh with 10 pts/L; 2, the numerical viscosity is reduced and new
numerical artefacts emerge as a consequence of the anti-diffusive numerical step in
FCT (Oran & Boris 1987). The shock front pressure history develops non-physical
localized spikes with amplitudes exceeding 140 and even non-physical negative
density states in the corresponding spatial profile beyond the time ¢ = 25. For
the calculations reported in figure 4, a CFL number of 0.25 was used; when the
recommended CFL number of 0.50 was used, the FCT method ‘blew up’ and gave
overflow from an exaggerated version of the same numerical effect. Other serious
numerical artefacts occurred in FCT for the stable case with overdrive f = 1.8;
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Figure 3. Shock pressure history for the one-dimensional unstable detonation E* = 50,
go =50, f=1.6,v=1.2.

the FCT method treated this stable detonation as if it was unstable for these mesh
sizes.

The pPM method definitely gave the best results of the three methods and, in
contrast to RCM and FCT, treated both the stable and unstable cases correctly
on the two finer meshes. For PPM the effects of numerical viscosity were clearly
evident on all but the finest mesh with 10 pts/L;,, in the unstable case; the pres-
sure maxima were chpped by 10% with 5 pts/L;/;. Unfortunately, a resolutlon
of 10 pts/Ly,; requires 5 x 10° mesh points for even comparatively short time
runs; thus running PPM with this resolution in general investigations of deto-
nation instability in two space dimensions is not possible with even the largest
contemporary supercomputers.

(ii) A new numerical method for unstable detonations

Based on the computational experiments documented above, a new numerical
method for computing unstable detonations in a single space dimension was de-
veloped and thoroughly tested. The basic structure of a fractional step scheme
is retained. In the first fractional step, the hydrodynamic part of the problem is
solved and the mass fraction of the reactant is advected as a passive scalar; in the
second fractional step, the species equation is advanced explicitly by integrating
the ODE for the mass fraction given the temperature field from the previous frac-
tional step. The hydrodynamic solver incorporates three ingredients in the basic
code:

(i) a higher-order Godunov scheme such as PPM as the basic con-
servative difference scheme;
(C) (ii) conservative shock tracking of the leading detonation front;
(iii) adaptive mesh refinement in the region of stiff chemical energy
release in the vicinity of the precursor shock front.

The choice of higher-order Godunov schemes such as PPM as the basic conser-
vative difference scheme is motivated by the superior behaviour of this method
on the test problems. The use of conservative front tracking was motivated by
the fact that PPM clips the basic leading front on coarse meshes and the physical
instabilities are generated by interactions with this leading shock front. The use
of adaptive mesh refinement in (2.4) gives an economical representation of the
solution since much coarser meshes can be used in the regions without significant
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Figure 4. Mesh refinement study with FCT of the shock pressure history for the
one-dimensional unstable detonation E* = 50, o = 50, f = 1.6, v = 1.2.

combustion. The numerical algorithm meets the design requirements in (B) and
generalizes readily to two space dimensions. We discuss this important generaliza-
tion in §5a of this review. In §3 e, we indicate the fashion in which asymptotic
theories and this new robust numerical method can be used to elucidate the
structure of unstable one-dimensional detonations.

(d) Asymptotic theory for detonation instability in one dimension

The trends in table 1 illustrate a general fact that detonations become more
unstable as the overdrive decreases. This suggests that decreasing the overdrive,
f, plays the role of a bifurcation parameter, much like increasing the Reynolds
number in fluid dynamics, so that asymptotic ideas and techniques from hydro-
dynamic stability theory can be adapted to develop asymptotic theories for the
dynamic development of instability in detonations. The simplest example of such
theories involves the dynamic development of instabilities in one-dimensional det-
onations for overdrives with f < f; and f — f < 1 where ZND waves are stable
for overdrives with f > fi and unstable for f < f7 provided the heat release and
activation energy are fixed. The example in (A) satisfies these requirements with
fo = 1.73. A detailed asymptotic theory for this situation has been developed
recently (Bourlioux et al. 1991b) and is summarized next.
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We use the vector notation v = *(p,v,p, Z). The precursor shock in the per-
turbed ZND profile in the laboratory reference frame is given by

z = P(t). (3.1)

We denote by e(z, f), the eigenmode for the linearized ZND profile with the
largest growth rate at overdrive f. We consider overdrives f with f < f; and

fi—f=¢ (3.2)

with € a small parameter and € < 1; at these overdrives the ZND profile is linearly
unstable. The asymptotic procedure systematically builds asymptotic solutions
of the reacting compressible Euler equations in (2.1) given by a constant state
ahead of the shock and with the form,

Y = Dt + [eA(e*t)el! + 9] + L[c.cl], (3.3)
u = UO + %[GA(GQt)eiwte(x/’ f) + EQU(Q)] + %[C.C.], )

behind the precursor shock, where c.c. denotes complex conjugate and the co-
ordinates x’ are shock attached coordinates. Here u° denotes the unperturbed
ZND profile with speed D at overdrive f. The frequency w is the imaginary part
of the corresponding eigenvalue in the right half-plane for the given overdrive f.
The systematic asymptotic procedure automatically predicts that the amplitude
function A(T) solves a Landau-Stuart equation,

dA/dT = xA + BA%A, (3.4)

where 8 and x are constants systematically determined by the asymptotic pro-
cedure with

x>0, Repg<O0. (3.5)

Next we describe the predictions of dynamic detonation instability by using
the elementary behaviour of solutions of (3.7). With polar coordinates

A(T) = R(T)e*™ (3.6)

the equation in (3.7) becomes
dR(t)/dt = xR(t) + (Re B)R3(t), dé(t)/dt = (Im B)R*(t). (3.7)
With (3.8), the first equation in (3.10) has two steady states for R(¢) > 0, namely
R(t)=0 and R, = (x/|Res])"?. (3.8)

Furthermore, the reader can easily check that every solution R(t) # 0 of the first
equation in (3.10) tends to the steady state R, as time increases; in fact the first
equation in (3.10) has an explicit solution by quadrature (Drazin & Reid 1981).
The second equation for the phase in (3.10) is readily integrated once R(t) is
known.

What do these facts yield for the predictions by the asymptotic theory of
the instability process? We see from (3.6) that the unstable critical point with
R(t) = 0 corresponds to the basic unperturbed ZND wave. On the other hand,
the stable critical point R, gives the non-zero solution,

A(T) = (X/IReB!)1/2 ei(x/IRe BT (3.9)
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and every solution with R(T)|;=o # 0 tends to the solution in (3.12). By inserting
(3.12) into the asymptotics in (3.6), we generate an asymptotic prediction of an
oscillating periodic shock front pressure history with the same qualitative form
as given in figure 3. Furthermore, the asymptotic theory predicts a perturbed
spatial structure determined by the linearized eigenmode, e(z’, f).

The reader familiar with nonlinear hydrodynamic stability theory (Drazin &
Reid 1981, ch. 7) above instability is a Hopf bifurcation: a pair of complex conju-
gate eigenvalues cross the real axis into the unstable half-plane as the overdrive
decreases through f;. Nevertheless, this is a non-classical Hopf bifurcation be-
cause resonant acoustic scattering states with exponential growth in space cross
the imaginary axis and become unstable nonlinear eigenmodes. While the general
outline of the asymptotic procedure follows ideas of hydrodynamic stability the-
ory, the actual details in deriving (3.6) and (3.7) are very different because of the
unusual and complicated structure of the linearized operator and the necessity
of finding the appropriate unique adjoint operator. In fact, earlier attempts at
nonlinear stability theory for unstable detonations (Erpenbeck 1966, 1970) suffer
from the defect that this unique adjoint problem was never used in a systematic
fashion with the unsatisfactory consequence that the differential equation for the
amplitude A(T') was never specified uniquely, that it had an almost arbitrary
form, and that secularities in the asymptotics were not suppressed. Erpenbeck
(1966) himself noted this ambiguity in his asymptotic procedures.

(e) Interaction of asymptotic theory and numerics in predicting
one-dimensional detonation instability

The asymptotic theory just summarized in §3d provides a detailed prediction
for both the growth and spatial structure of the instability for overdrives in
the vicinity of f; = 1.73 for the family of test problems discussed in (B). The
asymptotic theory provides a significant prediction which can be validated by
numerical simulations; furthermore, a glance at the extremely small growth and
decay rates of significant eigenmodes in table 1 in the vicinity of the critical
overdrive f§ = 1.73 indicates that these are challenging one-dimensional problems
to check the capability of numerical methods to detect instability. The numerical
method described in § 3 ¢ (ii) and several facets of the asymptotic theory described
in §3d were checked with excellent agreement (Bourlioux et al. 1991a). Below
we briefly describe one such comparison.

In figure 5, we display results for the unstable case f = 1.70 < f;. The plot
in figure 5a gives the time evolution of the pressure at the shock. The plot shows
how the original small perturbation, which is essentially due to the truncation er-
ror of the numerical scheme, gradually increases in magnitude to approach some
asymptotic saturation level. Simultaneously the pressure experiences oscillations
about the ZND value which is shown by a horizontal line. The period of these os-
cillations is very close to the one determined by the linearized unstable frequency
Im(a(f)) = 0.82.

In figure 5b we display the perturbed pressure and specific volume profiles
from the numerical simulation at the time ¢ = 65.6. The left half of figure 5b
gives the spatial profiles for a distance of 400 half-reaction lengths from the
leading shock while the right-hand side reveals a more detailed picture of the
first 20 units behind the shock. We determined the perturbation profiles by sub-
tracting the exact values of the steady ZND profile from the computed solution
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Figure 5. One-dimensional unstable detonation Et = 50, go = 50, f = 1.7, v = 1.2: (a) shock
pressure history; (b) direct simulation; (c¢) linearized eigenfunction.
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and then scaled amplitudes by the same scale that is used in figure 5¢ where
the corresponding components of the linearized eigenfunction are presented. The
agreement between the two sets of profiles in figure 5b,c is really remarkable.
Even the complicated oscillatory structure of the specific volume on large length
scales exhibits rather close agreement between theory and computation. We have
omitted spatial profiles for other state variables which also demonstrate a very
good agreement. These results confirm the validity of both the theory and the
numerical computations described here.

4. Theories for detonation instability in multi-dimensions

In this section we review some of the classical and current developing theories
for detonation instability in several space dimensions. We include a discussion
of linear and nonlinear theories for instability in both low-frequency and short-
wavelength regimes and the connections among these theories that have been
developed recently. In §5 we will illustrate the fashion in which these theories
interact with numerical computations to give new insights into the instability of
detonations in two space dimensions.

(a) Linearized instability of ZND waves in multi-dimensions

The theory of linearized stability for ZND waves in multi-dimensions was de-
veloped by Erpenbeck (1962, 1964, 1969) and this last reference remains an im-
portant summary and discussion of this work. We will make several comments
in §4b on some of the recent developments that have clarified some of the is-
sues then, particularly as regards short wavelength transverse instabilities and
geometric acoustics.

We begin with a sketch of the procedure for obtaining the equations for the
linear stability analysis of ZND profiles in two space dimensions. Since there is
rotational invariance in the directions transverse to the ZND wave, this two-
dimensional situation also automatically covers the general three-dimensional
case as regards linearized stability analysis. We change the notation for the vari-
ables in equation (2.1) slightly here for convenience in exposition but this should
not confuse the reader. In the laboratory coordinate system (z',y,t), the shock
front location is described by a curve zy = Dyt + 9(y,t), where Dy, is the ZND
shock speed. We transform the basic equations in (2.1) to the shock attached
coordinates (z,y,t) where

z=ga' — Dgt —(y,t). (4.1)

In the new coordinate system, the shock is described by the straight line x = 0.
If we define u; to be the particle velocity z-component in the steady frame

Ul o ull —_ DS (4.2)
the governing equations are now written
2+ Az, + Bzy — b — 1, Bb = c, (4.3)
where v 0
U1 0
z=|uy |, b=2z, c= 0 , (4.4)
p (v =1)Qor/v
A r
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up —v 0 0 0 u 0 —v 0 0
0 w, 0 v O 0 up 0 0 O
A=]10 0 w 0 0], B=]10 0 wu v 0 (4.5)
0 w 0 w3 O 0 0 ~p u, O
0 0 0 0 wuw 0 0 0 0 wus

Here v is the specific volume, u; and uy are the two velocity components, p is
the pressure and A = 1 — z is the mass fraction of burnt gas. We linearize the
above equations, assuming a normal mode expansion and Fourier transform in
the transverse direction

¥ = ' exp(at) exp(iky), (4.6)

where the prime superscript refers to a small perturbation while a star denotes
the basic ZND values. The linearized perturbation equations are

2 = 2*(z) + 2 (z) exp(at) exp(iky),

az' + A%z, +1kB*2 + C*2' — ab™y)' — ikB*b*y' =0, (4.7
where
— Uiy [ 0 0 0
Dz Uiy 0 O O
o 0 0 0 0 0
~1 r ~1 1
_L’y——)QO I}’nv - “] Dz 0 YUz — ( )Qorp (7 )QOTA
v v v v
—Ty Az O -7 —ry

(4.8)
The linearized Rankine-Hugoniot shock jump conditions for v, u;, p, A are as
follows: the continuity of the component of the velocity tangential to the shock
gives

A—, (4.9)
The shock conditions can be written as :
, 4 , , 2M2 + 2 ,
"= —me, e = G
47 M, (4.10)
¢ ’ I/J ) )‘; = 07

o= 2T Y, =

with M, the Mach number at the unperturbed precursor shock. The equations
in (4.7) and (4.10) need to be supplemented by a ‘radiation condition’ which has
the physical content that perturbations are not allowed to come in from infinity
behind the shock and affect the stability; this is a causality condition which
guarantees that the number of boundary conditions in (4.10) exactly matches
the number of solutions of (4.7) satisfying the causality condition.

The basic ZND profile is unstable in multi-dimensions provided there is a wave
number k, a complex number a(k) with growth rate Re(a(k)) > 0, and a spatial
eigenmode e(z, k) so that with ¢/ = 1 and 2’ = e(z, k), these functions satisfy
the equations in (4.7) and (4.10). The special case when the transverse wave
number vanishes, so k = 0, defines the equations for the linearized instability of
a ZND wave in a single space dimension. Clearly ZND waves can be unstable in
multi-dimensions at transverse wave numbers without necessarily being unstable
in the normal direction corresponding to a one-dimensional stability analysis. An
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Figure 6. Simple linear stability diagram (one family of unstable modes corresponding to one
curve for the growth rate Re(a) as a function of the transverse wavelength W). E* = 10;
qo = 50; f =1.2.

Figure 7. Complex linear stability diagram (shown are three distinct branches of unstable modes
corresponding to three curves for the growth rate Re(a) as a function of the transverse wave-
length W). There are many more unstable branches extending to W = 0 because this detonation
is short-wavelength unstable. ET = 50; qo = 50; f = 1.2.

example will be given below. One of the authors (Bourlioux 1991) has adapted
the numerical shooting procedure of Lee & Stewart (1990) to compute both the
transverse wave numbers, k, of instability as well as the spatial structure of the
eigenmode, e(z, k), in the linearized stability analysis. Such additional structure
is useful in providing initial data to systematically perturb ZND profiles in nu-
merical simulations (see §5).

In figures 6 and 7 we present the stability diagrams for two detonations with
the same heat release and overdrive but different activation energies. We use the
heat release, ¢o = 50, overdrive, f = 1.2, and v = 1.2. In figure 6, the activation
energy is ET = 10 while E* = 50 for figure 7. The graphs in the figures plot
Re(w) as a function of transverse wavelength. We note that W = 2 /k where k is
the transverse wave number so that small wave numbers correspond to W — oo
in figures 6 and 7. The graph in figure 6 indicates that for the lower activation
energy, the ZND profile has simple instability characteristics; there is a single
curve of unstable modes with a simple maximum at W = 6 and the unstable
modes are all concentrated at long transverse wavelengths. Nevertheless, this
ZND wave is stable with respect to one-dimensional normal perturbations since
there is clearly no growth at k = 0 (W — oo in figure 6). The graph in figure 7
reveals a much more complex stability diagram for the ZND wave with E+ = 50.
Three unstable branches are plotted in figure 7 and it is known (Erpenbeck 1969)
that the modes of instability extend to arbitrarily small transverse wavelengths.
Figure 7 indicates that the ZND wave in figure 7 is also unstable in a single space
variable since growth persists as W — oo. This is confirmed by the listing for
overdrive f = 1.2 in table 1.

Obviously, the general theory of linearized stability for ZND waves is very
complicated and this led Erpenbeck (1966, 1969) to develop a simpler criterion
for detonation instability at arbitrarily small transverse wavelengths.
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(b) Geometric acoustics and detonation instability

The role of trapping of short-wavelength acoustic signals in detonation in-
stability was pioneered by Strehlow and his co-workers (Strehlow & Fernandes
1965; Barthel & Strehlow 1966; Barthel 1974; Strehlow 1978). Recently, Majda
(1987) has developed a more complete geometric theory of detonation instability
through a systematic use of the theory of high-frequency geometric optics. This
theory was motivated strongly by the earlier work and generalizes it by includ-
ing all explicit time-dependent amplifying mechanisms as well as nonlinearity
for small-amplitude high-frequency wave patterns with ray trapping. This theory
also provides explicit physical mechanisms which lead to translating amplifying
self-similar transverse wave patterns with small-amplitude waves which resemble
the regular patterns for Mach stems and yields explicit criteria for cell spacing
generalizing those proposed earlier. It also establishes a link between the above
physical theories of detonation instability through geometric acoustics and Er-
penbeck’s complex formal theory of short-wavelength linearized instability and
answers a question posed by Erpenbeck (1969). Namely, for a given ZND wave
profile, self-similar amplifying short-wavelength patterns of geometric acoustics
occur if and only if the ZND profile satisfies Erpenbeck’s explicit algebraic con-
ditions for short-wavelength instability. Some additional algebraic details estab-
lishing this link are presented by Bourlioux (1991).

Two conditions are necessary in order for the theory of geometric acoustics to
predict detonation instability:

(i) trapped acoustic rays occur;
(D) (ii) amplification of acoustic amplitudes should occur in one com-
plete reflection cycle along the trapped rays.

Next, we discuss the conditions in (D) as background for the numerical exper-
iments.

The quantity ¢*(z) —v?(z) determines the ray trapping where ¢(z) is the sound
speed and v(z) is the normal velocity in the unperturbed ZND profile. Erpenbeck
classifies ZND profiles according to the behaviour of this quantity into three
groups:

(i) For type D (decreasing) profiles, ¢*(z) — v*(z) decreases mono-
tonically from the shock and no rays are trapped.
(ii) For type M (maximum) profiles, ¢*(z) — v?(x) has a unique
(E) maximum at £ and there is a continuous band of trapped rays.
(iii) For type I (increasing) profiles, ¢?(z) — v*(z) increases with
the maximum at infinity and there is a continuous band of trapped
rays.

Thus, from (D), ZND profiles need to be of type M or I in order to be unstable
at high wave numbers and have trapped rays. Of course, not every ZND profile
of type M or I satisfies condition (ii) of (D) and yields acoustic wave amplifica-
tion in one reflection cycle. In any given ZND profile, the explicit formulas from
Majda (1987) guaranteeing the amplification of wave patterns from geometric
acoustics can be determined by numerical quadrature: for a given heat release g
and overdrive ratio f, the condition for amplification of the acoustic perturbation
is that the activation energy E* be larger than some transition value E;f(qo, f).
Also the transverse distance y travelled by a given amplifying wave pattern is
readily calculated numerically. The ZND profiles from figures 6 and 7 are type M
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profiles. For the activation energy E* = 50, this is clear from figure 2. In figure 6,
the activation energy E+ = 10 is smaller than the transition value E;; = 11.1 at
go = 50, f = 1.2, and the trapped rays cannot amplify. In figure 7, E* = 50 and
the detonation is unstable at short wavelengths: there is a band of translating am-
plifying self-similar transverse acoustic wave patterns. This ZND profile has the
typical structure assumed by Strehlow. On the other hand, the ZND wave with
the structure from figure 1 has a type D profile and is stable at small transverse
wavelengths.

(¢) Theoretical predictions for cell spacing via detonation instability

The theories of detonation instability summarized in §4 ¢ and §4b naturally
lead to predictions of a regular cell spacing for transverse instabilities in a channel
of width W.

The first simple criterion involves the theory of linearized instability for ZND
profiles from §4 a. Given the channel width W, consider the family of wavelengths
compatible with the channel, i.e. W/j for j = 1,2,3,4,.... The predicted cell
spacing for the channel with width W is determined by the value W/j with the
largest growth rate of linearized instability. This is a theory based on the most
unstable linearized wavelength compatible with the geometry. For detonation
profiles with a stability diagram similar to the one in figure 6, a recent low-
frequency nonlinear asymptotic theory to be reviewed below in §4d provides
support for this prediction for sufficiently narrow channels.

The second class of criteria for cell spacing involves the theories of geometric
acoustic instability from §4b. Thus, we assume that there is a band of translat-
ing amplifying transverse acoustic wave patterns so that the conditions in (D)
are satisfied for the ZND profile. Associated with each translating amplifying
transverse wave pattern in the band is a transverse distance y that this pattern
propagates in one reflection cycle. One natural cell-spacing criterion proposed by
Majda (1987) is to predict the cell spacing through y*, the transverse distance
travelled in one cycle by the translating wave pattern with the largest amplifica-
tion rate in unit time. Other possible candidates for the cell spacing predicted by
the theory of nonlinear acoustics include yui,, the smallest transverse distance
travelled in one cycle by any amplifying acoustic wave pattern, and yuya.x, the
largest transverse distance travelled in one cycle by any amplifying acoustic wave
pattern. The criterion using Yy, is similar to the one proposed by Barthel (1974).
The above criteria are developed without involving the boundary conditions of
the channel width. For a given channel width, W, the same criteria apply among
the discrete family of patterns with transverse propagation distance in one cycle
given by y; = W/j for j =1,2,3,4,....

The ZND profile with stability diagram in figure 7 provides an interesting
illustration of the above criteria from nonlinear acoustic instability. For this ZND
Wave, Ymin = 32, Ymax = 00, y* = co. The fact that y* = oo is readily understood;
there is a unique trapped ray pattern which propagates exactly parallel to the
detonation front and in this case also has the largest amplification rate. In this
example, the criteria of geometric acoustics predict no cells provided the channel
width is smaller that 32 and cells equal to the channel width provided that W is
larger than 32.
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Figure 8. Typical neutral stability curve for low-frequency asymptotic theory.

(d) Low-frequency asymptotic theories for pattern formation in unstable
detonations

Experiments involving unstable detonations exhibit a remarkable number of
different unstable patterns involving structures with standing waves (regular
cellular transverse structure), travelling waves (spinning detonations), irregular
spatio-temporal chaotic patterns (irregular cell structures), and perhaps irregular
chaotic fluctuations without cells in certain condensed phases. It is an extremely
interesting challenge for the theoreticians interested in detonation physics to de-
velop simpler qualitative-quantitative asymptotic models which might explain at
least in a qualitative fashion some of the physical selection mechanisms responsi-
ble for discriminating among the various patterns observed. The development of
such theories is an ongoing enterprise but nevertheless it is interesting to briefly
describe some of the results and current directions. A simple application involv-
ing the interaction of such theories and numerical computation in explaining the
occurrence of standing waves versus travelling waves will be described in §5d
below.

As in §3d, the theories use the overdrive, f, as a bifurcation parameter and
attempt to mimic theories of nonlinear hydrodynamic stability. The underlying
assumption in such asymptotic theories is the existence of a critical overdrive,
fe, so that the neutral stability curve in the linearized stability analysis of the
underlying ZND wave has the form depicted in figure 8; as in §3d, it is assumed
that the ZND waves are unstable for overdrives f with f < f. with the band
of unstable wave numbers below the neutral stability curve. Several examples of
parameters for ZND waves exhibiting stability curves of this sort are presented
by Bourlioux (1991) and Erpenbeck (1970). Also, the asymptotic theories assume
spatial periodicity with period W this is the effective channel width. It is worth
mentioning here that other parameters such as the heat release can be used as a
bifurcation parameter rather than the overdrive.

(i) Single travelling mode in a narrow channel

The requirement of a narrow channel means that given the channel width, W,
there is exactly one wave number k£* on the neutral stability curve in figure 8 such
that W satisfies W = (27/k*);j this condition is always satisfied for appropriate
narrow channels. Under these circumstances, a simplified asymptotic equation for
the nonlinear development of instability can be developed in the same fashion as
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described above for one dimension from §3d (Majda & Roytburd 1993). With
¢ = 1) - f

and € < 1, asymptotic solutions of the reactive Euler equations in two space
dimensions are constructed with the form

¥ = Dt + ¢[A(€*t) exp(iw(k*, f)t + ik*y) + c.c.] + O(€?), (4.11)
u=1u'(z, f) + cA(St)e(w, k", ) exp(iw(k*, )t +ik'y) +cc. +O(e). |

Here and below, u = *(p,v,p, Z), ¢ defines the perturbed precursor shock front
(see (4.1)), c.c. denotes complex conjugate, e(z, k, f) denotes the unstable eigen-
mode from (4.7) and (4.10) of the linearized stability theory and iw(k*, f) = Im «
from (4.6). As in equation (3.7), the systematic asymptotic procedure automati-
cally predicts that the amplitude A(T') solves a Landau-Stuart question

dA -

T = XA+ BA%A, (4.12)
where 3, x are constants determined by the asymptotic procedure with y > 0,
Re 3 < 0. By recalling the analysis from (3.10), (3.11), (3.12) for the equation
in (4.14), we see that for narrow channels, since w(k*, f) # 0 in (4.13), the
asymptotic theory predicts that travelling mode solutions arise from travelling
mode perturbations of the basic ZND profile in the nonlinear instability process.
We will see in §5d below that such travelling modes are analogues in the small-
amplitude regime of structures which resemble spinning detonations.

(ii) Travelling modes in wide channels

Here we review the new asymptotic equations that result when many modes
of instability compete on wide channels W with W > 1. We recall from (2.1)
that the basic length-scale here is the half-reaction length of the ZND profile so
most channel widths in experiments are large. On very wide channels, the side-
band instabilities in figure 8 compete to give a partial differential equation for
the asymptotic description of pattern formation in the instability process. With
e? = f.— f and € < 1 used by Majda & Roytburd (1992), systematic asymptotic
solutions of the reactive Euler equations are constructed in the large channel
limit, W = O(e™?) by mimicking ideas of nonlinear wave number interaction
in hydrodynamic stability theory (Benney & Newell 1967; DiPrima et al. 1971;
Stewartson & Stuart 1971; Eckhaus & Iooss 1989). These asymptotic solutions
have the form

Y(y,t) = D(f)t + €[A(Y,T) exp(iw(ke, f)t + ikcy) + c.c.] + O(€?),
u(z,y,t) = u(z, ) + [A(Y,T)e(z, ke, f) exp(iw(ke, f)t + ikey) + c.c.] + 0(62),}
where the arguments of the slow variables Y, T are given by (419

T=¢€t Y =e(y+uvt) (4.14)
with the wave speed v given by the group velocity,
v= 6_w|
Ok Rk
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asymptotics systematically determine that the amplitude function A(Y,T') satis-
fies a complex Ginzburg—Landau equation,

0A - 0*A

5T XA+ BAA+ Ty (4.15)
where v is a complex constant which is computed in the asymptotic procedure
while x > 0 and § with Re 8 < 0 are the same constants as appeared in (4.14)
for the narrow channel theory.

The complex Ginzburg-Landau equation is one of the main qualitative model
equations describing pattern formation. For various regimes of values of the co-
efficients x, 3, 7, this equation has many additional stationary, periodic, chaotic
(Keefe 1985), and even ‘turbulent’ (Bartuccelli et al. 1990) solutions with be-
haviour far more complex than that of the simple ODE from (4.14). Because
experiments indicate that there is irregular and chaotic behaviour in spatial fluc-
tuations for detonation instability in some physical regimes the occurrence of
the complex Ginzburg-Landau equation in the asymptotics suggests a possible
qualitative explanation for many of these phenomena. A detailed study of this
possibility including the actual values for the coefficients x, 3, v that can oc-
cur in the instability process is currently being pursued by V. Roytburd and the
authors.

The following simple examples exhibit that there are many more travelling
wave solutions of nonlinear instability on wide channels, W, beyond the simple
solutions of the ODE in (4.14) presented in § 3 d. The reader can easily verify that
the equation in (4.17) has the travelling wave solutions,

A = Rye'*bnY-onT) (4.16)
which are spatially periodic on a large channel of width W provided that

2Tn )
kN:%/—, N=0,1,2,...,
R~ X (Re 7k} (4.17)
(Re3)  (Rep) ’
wy = (Im y)k% — (Im B)R%. |

Of course the solution with N = 0 reduces to the simple narrow channel solution
described in (3.11), (3.12) from §3d.

(iii) Interaction between standing modes and travelling modes

We rapidly review the developing asymptotic theory for the interaction of
standing waves and travelling waves in the dynamic instability of ZND waves.
Here we emphasize the simpler situation involving narrow channels W since we
present a simple application later in §5d.

Standing waves and travelling waves necessarily arise simultaneously as a con-
sequence of the invariance of both the reactive Euler equations and the basic
ZND profile to reflection symmetry in the transverse variable y. With u =
t(p,v1,vs,p, Z), this symmetry means that if we define the transformation (Ru)
by

(Ru)(m,y,t) = t(pv U1, —V2, P, Z)(xa—yat)a (418)
Phil. Trans. R. Soc. Lond. A (1995)
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then we have the following properties:

(i) If u is a solution of the reacting Euler equations, so is Ru.
(F) (ii) If ugnp is the ZND profile propagating in the z-direction,
Ruznp = uznp, i.e. the ZND wave is invariant under R.

The facts in (F) immediately imply the following structure in the linearized
stability problem:

If e(x)e™*v* is an eigenmode of the linearized problem for ZND sta-
(G) bility in (4.7) and (4.10), then (Re)(z)e *¥** is also an eigenmode
of the linearized problem in (4.7), (4.10) with the same growth rate.

Clearly linear combination of both of the unstable modes in (G) generate mix-
tures of amplifying travelling waves or standing waves moving in both transverse
directions across the channel. Of course, the fact in (G) means that the stabil-
ity diagram depicted in figure 8 actually has a second piece centred around —k,
obtained by reflection of figure 8 about the axis. In the case of narrow channels,
the asymptotic solutions have the form in (4.13) but the terms of order e, for
example, in the shock front perturbation involve the linear superposition,

A" () exp(iw(k*, f)t + ik*y) + A~ (€’t) exp(iw(k*, f)t — ik*y). (4.19)

There is a similar perturbation for u using (G) which we omit. The complex
amplitudes A* correspond to propagating modes in both directions transverse
to the channel and in general these modes interact. As in (4.13), (4.14), the
systematic asymptotic procedure yields coupled ODEs for the amplitudes given
by

U = XA +BAT AT +alA [ AT, (4.20)
A = xA™ + A [PA +alat A,

where x > 0 and 3 with Re 3 < 0 are the same constants as in (4.14) and « is a
complex number calculated in the asymptotic procedure.

The ODEs in (4.24) provide a simplified asymptotic description of the inter-
action of the two different travelling modes in the dynamic nonlinear transverse
instability of the ZND wave. Obviously, the pure travelling mode solutions of
§4d (i) are special solutions of (4.24) with either A, = 0 or A_ = 0. Next we
indicate briefly the fashion in which the equations in (4.24) qualitatively deter-
mine the preference and selection process of pure travelling modes and standing
modes when both effects compete. With the polar coordinates

A*(T) = R*(T)e+™,  A~(T) = R™(T)e’-")
after a simple rescaling of time the 0DEs for R*(T") become
A _ 4R+ — (R)? + b(R")’RY, wan)
At —aR" — (R)*+ b(R")’R",

where a > 0 and b are both real coefficients which are readily computed from
X, 8, and . We omit the equations for the phases, 6. (7T'), since as in (3.10), these
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functions only involve quadrature once R*(T') are known. The equations in (4.25)
are readily analysed and we summarize their properties below:

(i) The ZND profile has coordinates (0,0).
(ii) The two travelling waves have coordinates (R*,R™) =
(a'/2,0), (0,a'/?).
(iii) For b < 1, the standing wave is a steady solution of (4.25)
( with coordinates

= ((725) 7 () )

The next step is to address which of the four steady states in (H) is actually
stable as time evolves for the two ODEs in (4.25). Special perturbations of the
form (R"(¢),0) or (0, R~ (t)) with R (t) # 0 or R~ (t) # 0 approach either of the
two travelling waves in (H). Similarly, for special symmetric perturbations of the
form (R(t), R(t)), it is easily verified that provided R(t) # 0 and b < 1, these
solutions approach the standing wave in (H). Simple arguments using phase plane
techniques give the following description of the behaviour for general solutions of
(4.25) which do not obey the special symmetries just discussed:

(i) For b < —1, the general solution (R*(T), R~ (T)) of (4.25) ap-
proaches one of the two steady travelling waves in (H) as T' — oo; the
symmetric mode is unstable dynamically to general perturbations.

(ii) For b > —1, both of the travelling modes are unstable dy-

(I)  namically to general perturbations. For 1 > b > —1, the general
solution of (4.25) approaches the standing wave solution in (H) as
T — oo. For b > 1, the general solution of (4.25) has the property
that ((R*)? + (R7)?)(T) becomes unbounded as T' — oo in a sym-
metric fashion so that R, (T') ~ R_(T) for T large.

To summarize, the nonlinear asymptotic theory gives simple conditions de-
pending on the coefficient b in (4.25) so that either travelling modes or standing
modes are preferred in the basic process of instability in the ZND wave. The
coefficient b can be calculated numerically for any ZND wave with a stability
diagram with the form in figure 8. We will describe a simple interaction between
the theory just presented and numerical simulations in §5 ¢ (ii).

An asymptotic theory for the interaction of travelling modes and standing
modes on channels with large widths, W > 1, is currently being developed. The
simplified asymptotic equations involve two coupled complex Ginzburg-Landau
equations as in §4d(ii) with additional interaction terms that reduce to the
simple coupled ODEs in (4.24) in the mean field limiting case. Such equations
provide a qualitative model for pattern formation in detonation instability that
allows for both regular and irregular transverse wave instabilities as well as mode
competition between travelling and standing waves.

Finally, we comment briefly on other work which attempts to model pattern
formation for unstable detonations. Erpenbeck (1970) presents nonlinear equa-
tions which model the coupling between standing modes and travelling modes
on narrow channels by a system of ODEs. Unfortunately Erpenbeck’s arguments
(Erpenbeck 1966, 1970) suffer from the same defect of deriving non-unique am-
plitude equations without regard to secular behaviour in the asymptotics as we
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discussed earlier in the last paragraph of §3d. In fact, the new asymptotic ap-
proach (Majda & Roytburd 1992) eliminates this ambiguity by systematically
eliminating secular terms through a unique adjoint problem; furthermore, the re-
sult is the system of equations in (4.24) which is much simpler than those derived
previously by Erpenbeck.

5. Numerical and theoretical structure for two-dimensional unstable
detonations

We begin this section by describing a new numerical method which the authors
have developed recently for computing unstable detonations in two space dimen-
sions (Bourlioux 1991; Bourlioux & Majda 1992, 1993). The design principles and
validation studies for this code are based on the same considerations which we
reviewed in § 3 of this paper for detonation instability in a single space dimension.
We include a brief summary of the two-dimensional test problems which we have
used in testing this code since this might be of general interest to researchers in
computational combustion who are interested in developing improved numerical
codes for detonations. Then we review some of the physical insight into detona-
tion instability which has been achieved recently through simulations with this
high-resolution method, especially, regarding turbulence in detonations. Finally
we summarize the recent comparison of numerical predictions and the theory
reviewed in §4 c and §4 d above regarding cell spacing and mode interaction.

(a) A new numerical method for unstable detonations

Here we present the new numerical method to solve the reactive Euler equa-
tions in two space dimensions which we have developed recently and applied to
detonation instability. As in a single space variable, the global procedure is a very
natural fractional step scheme which involves two ingredients per time step.

In the first fractional step, the hydrodynamics part of the problem is solved;
the first three equations in (2.1) are advanced with the reactant mass fraction
advected as a passive scalar. In the second fractional step, the species equation
is advanced explicitly by integrating the ODE for the mass fraction given the
temperature field from the previous fractional step.

The hydrodynamic solver in the first step combines a higher-order Godunov
method with conservative front tracking and adaptive mesh refinement. This new
solver is designed to meet the following requirements:

(i) sharp and robust representation of the detonation front;

(ii) appropriate representation of all relevant length-scales of the problem, in-
cluding the small length-scales associated with the stiff chemistry near the front;

(iii) accurate representation of the smooth regions of the flow and accurate,
stable capturing of all the other discontinuities behind the leading front.

The higher-order extension of Godunov’s method implemented is second-order
accurate in space and time, and captures shock waves and other discontinuities
with minimal numerical overshoot and dissipation. The method was first intro-
duced by Colella & Woodward (1984). The version used here is a two-dimensional
unsplit code as described by Colella (1984).

This scheme is the basic solver for a simplified version of Berger & Colella’s
(1989) adaptive mesh refinement procedure. To concentrate the computational
effort in the region near the front with stiff chemistry, we superimpose on our
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Figure 9. Adaptive grid and front tracking set-up for two-dimensional detonation calculation
(detonation moving to the right).

basic uniform grid a rectangular patch of refined grid in the neighbourhood of
the leading shock. In the present approach, the width of the fine grid is fixed and
the fine grid position is regularly updated along with the entire computational
domain to follow the leading shock.

We also implemented the conservative front tracking procedure developed by
Chern & Colella (1987). The leading front is represented as a polygonal curve
moving through the finite difference mesh and treated as an internal bound-
ary whose motion, along with the fluxes across it, is computed explicitly using
Rankine-Hugoniot jump conditions. This procedure avoids the averaging process
across the discontinuity as well as the additional numerical viscosity necessary for
stable capturing of the shock: the present approach is much more reliable when
attempting to compute the physical instability of the discontinuity. We already
illustrated this in §3 in a single space variable.

Unlike typical front tracking or shock-fitting codes, the tracking procedure
of Chern & Colella has the advantage that it is fully conservative. This allows
the method to capture accurately the other discontinuities behind the tracked
leading front. In particular, triple point configurations are computed, where the
Mach stem and the incident shock are tracked as parts of the leading front, while
the reflected shock and the contact discontinuity, intersecting the leading front
from behind, are captured by the finite difference scheme. This procedure has
allowed us to compute front instabilities with transverse amplitude too small (a
few per cent of the half-reaction length) to be effectively represented by a finite
difference grid but that can generate significant perturbations of the flow in their
wake for distances of several half-reaction lengths.

(i) Numerical test suite for code development for two-dimensional detonations

Here we summarize the test problems which we have used to validate the two-
dimensional numerical code which we have just described. This code obviously
reduces to the one described in § 3 ¢ (ii) in a single space dimension. As described
in §3 of this review, a preliminary ‘numerical test suite’ for computing one-
dimensional unstable detonations was already applied to this numerical code in
the first stage of the design procedure. For the two-dimensional numerical code,
we used the following four classes of test problems for validation and resolution
studies.
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(i) Non-reactive test: a shock wave overtaking the tracked leading shock front.
An analytic solution is known and this test provides a simple assessment of the
capability of the numerical code to treat the interaction of tracked and captured
waves with high resolution.

(ii) Non-reactive test: the initial data consists of embedded Mach stems in the
conservative tracked front. Without chemical reactions, the physical predictions
are decay of the wave pattern to the stable leading shock front. The numerical
method had these features in its computed solutions.

(iii) Stable and unstable ZND waves with parameters near stability boundaries:
these studies test the capability of the numerical method with realistic mesh
spacings to detect stable and unstable wave patterns as predicted by linearized
stability theory (see §4 a). Initial data for these tests consisted of perturbing the
ZND profile by standing and travelling wave patterns determined by linear theory
and also random front perturbations.

(iv) A classical unstable detonation: the instability of the ZND profile with
E* =20,q0 =2, f = 1.1 results in a classical example of the ‘explosion within ex-
plosion’ structure (Urtview & Oppenheim 1966; Lundstrom & Oppenheim 1969;
Oppenheim 1985) for propagating regular transverse Mach stems with a very
simple structure; the reflected shock waves and vortex sheets are nearly recti-
linear and only slightly curved (see figure 10). This example is the simplest case
known to the authors for mesh refinement convergence studies for transverse wave
structure with Mach stems.

(b) Recent insight into the physical phenomena of unstable detonations

In the last fifteen years there have been many important contributions to the
understanding of unstable detonations through direct numerical simulation of
two-dimensional problems. Taki & Fujiwara (1973, 1981) pioneered these efforts
and conclusively demonstrated that contemporary numerical methods can repro-
duce the regular Mach stem cell structure typically observed in experiments with
gaseous phases. In their numerical work, Boris, Oran, and their collaborators
(Oran et al. 1982; Kailasanath et al. 1985; Guirguis et al. 1986; Boris & Oran
1987) have also demonstrated several other important physical effects in the cel-
lular structure for unstable detonations such as the formation of unreacted gas
pockets and also some aspects of irregular cell structures. There are recent simula-
tions of unstable detonations in three dimensions by Schéffel (1989) and Fujiwara
& Reddy (1989). Here we describe briefly some of the new physical insights into
unstable detonations that have been developed recently through simulations with
the numerical code described in §5 a.

(i) Turbulence in the wake of unstable detonations

Lee (1988) has suggested that the instability of detonations can be a source of
significant turbulence. Recently, by varying the heat release, activation energy,
and overdrive, the authors were able to generate the transition to two-dimensional
turbulence in the wake of unstable detonations. Furthermore, these numerical
computations indicate that in the most unstable cases, the strong turbulence
contributes to the irregularity of the cellular pattern. We describe these results
and the corresponding physical phenomena briefly below.

In each of figures 10, 11, and 12 we present snapshots of the pressure, temper-
ature, vorticity, and reactant at equal time intervals as three different unstable
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Figure 10. Sequence of six snapshots of the flow field through half a cell cycle (increasing time
from left to right, shock moving to the right) with, from top to bottom, pressure, tempera-
ture, vorticity and reactant mass fraction. In this sequence and similar sequences to follow, the
computational solution is plotted twice vertically for each variable, using the periodic boundary
conditions. In the post-shock domain, the grey scale varies linearly between white (minimum)
and black (maximum), while the uniform flow field ahead of the shock is always assigned the
colour white. BT = 20; qo = 2; f = 1.1; width is 5.7.

detonations propagate down a channel through one-half a period cycle of the
basic transverse wave structure. At the next time interval not displayed the ba-
sic structure from the first snapshot is repeated with a phase shift. In figure
10, we plot the transverse instability that emerged from a perturbed ZND pro-
file with v = 1.2, g = 2, E* =20, f = 1.1 while for figure 11 the ZND profile
had v = 1.2, go = 50, ET =10, and f = 1.2; in figure 12, the ZND profile had
v = 1.2, gqo =50, BT =50 and f = 1.2. Thus, the activation energy and heat
release increases substantially from figure 10 to figure 11 while the activation
energy increases substantially from figure 11 to figure 12 with fixed overdrive and
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Figure 11. Sequence of six snapshots of the flow field through half a cell cycle (increasing time
from left to right, shock moving to the right) with, from top to bottom, pressure, temperature,
vorticity and reactant mass fraction. E* = 10; go = 50; f = 1.2; width 10 (shown twice).

heat release. A quick glance at the vorticity field displayed in these figures clearly
indicates a transition to turbulence with increasing heat release and activation
energy. Next we present a brief explanation of these phenomena.

The propagating transverse wave structure in figure 10 confirms the classical
picture of ‘explosions within explosions’ for the propagation of transverse cells
in a detonation front (Oppenheim 1972). In the vorticity field from figure 10,
the contact discontinuities appear with alternating signs and are nearly straight
lines. This picture confirms the classical explanation of the concentrated vortex
at the triple point as removing the soot in the physical experiments.

In figure 13, a schematic diagram shows the creation of a new pair of vortex
lines of opposite signs at each collision of triple points. In general, when the two
new contact discontinuities are formed, the two incoming ones are repelled and
drift down the reaction zone. Once they are detached, their tips, which used to
be attached to the triple point, will tend to roll up and form two pairs of counter-
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Figure 12. Sequence of six snapshots of the flow field through half a cell cycle (increasing time
from left to right, shock moving to the right) with, from top to bottom, pressure, temperature,
vorticity and reactant mass fraction. E* = 50; go = 50; f = 1.2; width 20 (shown twice).

rotating eddies which repel. This roll up is not visible in figure 10 but the above
discussion explains the appearance of the regular coherent plumes in the case
graphed in figure 11. Here the heat release is larger and the contact discontinuities
have much larger strength so they roll up. Spectacular coherent patterns are ob-
served in the temperature and vorticity fields in figure 11 through the mechanism
just outlined above. Next we explain the increased turbulence in the case from
figure 12 as compared with the one in figure 11. The transverse waves in figure
12 involve complex structures with multiple trailing Mach configurations which
qualitatively resemble those observed in some experiments (Voitsekhovskii et al.
1966). The numerical solution displaying this complex structure at one snapshot
in time is given in figure 14. Each additional contact discontinuity and curved
shock in these multiple trailing configurations provides an additional source of
vorticity to generate more turbulence through the basic process depicted in fig-
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MS IS

(b

Figure 13. Schematic diagram for collision of triple points and roll-up of vortex sheets, creating
pairs of anti-parallel vortices (MS, Mach stem; IS, incident shock; RS, reflected shock; +(—),
slip line with positive (negative) vorticity).

Figure 14. Snapshots of pressure (top left), density (top right), reactant mass fraction (bottom
left) along with the corresponding wave diagram (bottom right). The detailed multiple Mach
stem structure in the wake of the leading front is in surprising agreement with the experimental
results of Voitsekhovskii et al. (1966). Following their notation, M is the Mach stem, I is the
incident shock, A is the triple point, AB is the reflected shock, B is also the triple point for the
secondary Mach stem configuration, BC is the transverse wave segment, AD is the slip line,
DK is part of a centred rarefaction wave. Most of the reaction takes place between the leading
shock and the dashed line.

ure 13. On the other hand, the instability in figure 11 is less strong and only
involves simple Mach stems: coherent structures strongly dominate the flow field
because these additional wave structures are absent. A closer inspection of the
vorticity field in figure 12 reveals that the flow field displays many of the features
of fully developed two-dimensional turbulence (Brachet et al. 1986) in the wake of
the detonation front. Also, the numerical front track record for this case indicates
that this strong turbulence contributes to the irregularity of the cellular pattern.
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(ii) Pattern formation in unstable detonations

Next, we briefly describe a numerical simulation with strong spatio-temporal
irregularity in the cellular structure as time evolves. Since the numerical method
tracks the leading precursor shock front, it is natural to display the front track
history as a diagnostic. The basic ZND wave from figure 11 has the values v = 1.2,
go = 50, E* = 10, f = 1.2 and the cell spacing in figure 11 computed on a
narrow channel is 10. This ZND wave is an interesting example with several
competing modes of instability with comparable growth rates. In figure 15 we
present the front track history for a numerical simulation on a wider channel
with W = 40. Clearly, the front track history displays irregular cells in space-
time with a qualitative structure which strongly resembles the irregular cells in the
classical experiments of Strehlow (1978). As discussed in §4 d, coupled complex
Ginzburg-Landau equations are capable of producing similar chaotic phenomena
in appropriate regimes of the coefficient values. Since current asymptotic theories
establish a link between these equations and detonation instability, the qualitative
resemblance in the corresponding solutions may not be entirely coincidental.

(¢) Comparison of theory and numerics

Here we briefly discuss the comparison between the qualitative and quantitative
theoretical predictions for cell spacing and mode interaction described in §4 ¢ and
84 d above with the results of high-resolution numerical simulations designed
specifically to test these theories.

(i) Theoretical and numerical predictions for cell spacing

Eight numerical experiments were developed by the authors (Bourlioux & Ma-
jda 1992) which systematically tested the two theories for cell spacing which we
summarized in §4c. Four of the ZND profiles were stable at short wavelengths
and had simple stability diagrams like the one in figure 6. The other four cases
involved ZND profiles that were unstable at short wavelengths with complex in-
stability diagrams as depicted in figure 7.

First, we discuss the simplest theory for cell spacing based on the most un-
stable linearized wavelength for the ZND profile. This theory gave a remarkably
accurate prediction for the cell spacing for four of the ZND profiles provided the
channels had a sufficiently narrow width. These were the four cases characterized
by the fact that the ZND profile is stable at high wave numbers and has a simple
finite band of unstable modes at long wavelengths as in figure 6. Two of these
examples have the cellular structures which we discussed earlier in figures 10 and
11. In one of the four cases corresponding to the case in figure 11 with stabil-
ity diagram in figure 6, the simple predictions of cell spacing via linear theory
are only qualitatively relevant: for a given channel width, the cell spacing is not
necessarily unique with a dependence on the characteristic wavelengths in the ini-
tial data and nonlinear mode competition among several modes with comparable
growth rates. These aspects are discussed further in §5 ¢ (iii). Furthermore, the
four cases where the ZND profile is unstable at short wavelengths illustrate that
the simple theory based on most unstable linearized wavelengths can fail when
there is a more complex stability diagram. The example in figure 12 with the
complex stability diagram in figure 7 illustrates this point dramatically. When
ZND profiles are unstable at short wavelengths, there is an enormous range of
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Figure 15. Front track: irregular cellular pattern; ET = 50; qo = 10; f = 1.2; width is 40.

unstable wavelengths in the ZND profile with comparable growth rates and any
noise excites many instabilities rather than selecting a preferred mode.

Next we discuss the comparison between numerical simulations and cell spac-
ings based on the theory of geometric acoustics summarized in §4 b and §4 c¢. The
first naive expectation based on the theory of geometric acoustics is that the two
conditions in (D) need to be satisfied in order for transverse Mach stems to form
in detonation instability from a ZND wave. Two counter-examples are depicted
in figures 10 and 11. The ZND profile in figure 1 is type D so that by the criterion
in (E), no rays are trapped so that the two conditions in (D) are violated in dra-
matic fashion; nevertheless, as given in figure 10, the development of instability
in this wave leads to transverse Mach stems. Similarly, the detonation wave with
stability diagram in figure 6 has type M so that there are trapped rays but none
of these waves amplify so that the conditions in (D) are violated; again, figure
11 indicates that transverse Mach stems develop for this case. For the four ZND
waves that are unstable at short wavelengths used in the numerical computations,
the theory of geometric acoustics predicts cell spacings as described in §4 ¢ that,
respectively, differ by two orders of magnitude, or are 2 or 3/2 times as large,
or agree with the numerically computed cell spacing. All three of the examples
with relatively good agreement between geometric acoustics and the numerical
simulations for cell spacing are very unstable ZND waves with large growth rates.
The numerical computations give no evidence for the specific mechanisms of non-
linear acoustics summarized in §4 b; because there are large growth rates at all
wave numbers for these ZND waves, large amplitude effects rapidly dominate the
basic process of instability so any agreement might be fortuitous.

(if) Mode interaction in unstable detonations

The cellular mode of instability and spinning detonations are examples of large-
amplitude standing waves and travelling waves which arise in unstable deto-
nations. The asymptotic theory at small amplitudes discussed in §4d (iii) and
summarized in (4.27) suggests that either standing waves or travelling waves of
instability can emerge from the instability of ZND waves under appropriate cir-
cumstances. Here we present the results of numerical computations which confirm
that both possibilities described in (4.27) actually occur.

Since the numerical method from §5a computes the leading shock front as a
polygonal curve, it is natural to plot the maximum and minimum amplitudes of
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Figure 16. Front perturbation amplitude min-max history for v = 1.2, g0 = 2, E* = 20, and
f = 1.1: (a) travelling wave initial data; (b) standing wave initial data.

the perturbed front as time evolves; we call this diagnostic the front perturbation
amplitude min—max history. In figure 16 we present the front min—max history for
two initial perturbations of the ZND wave with profile in figure 1 with v = 1.2,
g = 2, E* = 20, and f = 1.1. In figure 164, the initial data was the ZND
profile perturbed slightly by an unstable travelling mode with the most unstable
wavelength of linearized stability theory, while in figure 16b we used standing
wave perturbations with the same features. For times 7" with T' > 70, both
front min-max histories have the same oscillatory structure characteristic of a
standing wave. In fact at these times, the actual solution has the transverse wave
structure which we depicted earlier in figure 10. In this example, travelling modes
are unstable and standing modes are stable.

_ Next we present numerical results which illustrate the opposite behaviour pre-
dicted by (4.27). In figure 17 we give the front min—max history for travelling and
standing wave perturbations of a ZND profile with v = 3, ¢o = 0.125, E* = 50,
f = 1.2. In this case the graphs in figure 17 indicate that both the standing wave
and travelling wave initial data evolve to a travelling wave by the times T' ~ 50. It
is amusing to look at a snapshot of the resulting travelling wave that emerges in
both calculations which is presented in figure 18. The result is a strong transverse
propagating travelling wave where all the combustion occurs in a localized fash-
ion. This type of structure is very similar to the marginal ‘spinning’ detonations
sometimes observed in round tubes (Fickett & Davis 1979); however, in this case
the heat release is apparently too small to generate transverse discontinuities and
sustain a fully fledged triple point configuration. This calculation confirms the
second theoretical possibility in (4.27) where the travelling modes are both stable
but the symmetric standing mode is dynamically unstable.

Another interesting type of mode interaction occurs when the given ZND profile
has several competing modes of linearized instability of comparable growth rate
for a given channel width. The ZND wave with the parameters E* = 10, go = 50,
and f = 1.2 on a channel of width W = 40 is an example satisfying these
conditions. There are three modes of linearized instability for the ZND profile
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Figure 17. Front perturbation amplitude min—max history for v = 3, go = 0.125, E™ = 50, and
f =1.2: (a) travelling wave initial data; (b) standing wave initial data.
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Figure 18. Snapshot of the flow field; shock moving down and to the right. v = 3, go = 0.125,
E* =50, and f = 1.2 (black, maximum; white, minimum).
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Y
0 400
X
Figure 19. Front track: competition between modes 4 and 6. E* = 50; go = 10; f = 1.2; width
is 40.

with nearly comparable largest growth rates and compatible with the channel
width, W = 40. These modes of linearized instability predict cell spacings of 4, 6,
8, i.e. have wavelengths W = 10, 40/6, 5, with comparable and largest linearized
growth rates given respectively by Re(a) = 0.19, 0.22, 0.21. The reader can
confirm these approximate values by looking back at figure 6. To illustrate the
nonlinear mode competition in this example, we perturbed the ZND profile by a
combination of the modes with wavelength W = 10 and W = 40/6 with equal
and very small amplitudes. We display the front track history in figure 19. As
the reader can see, both modes interact nonlinearly for a long time; however,
ultimately a nonlinear pattern with four cells across the channel emerges. A
similar outcome was observed when the linearized modes with spacings 4 and 8
were excited initially with equal amplitudes.

According to linear theory both of the modes with cell spacing 6,8 have larger
growth rates than the mode with cell spacing 4. Nevertheless mode 4 emerges
from the nonlinear competition. This example shows that the simple theoreti-
cal predictions of cell spacing described in §4 ¢ based upon the most unstable
linearized wave compatible with a given channel width are only qualitatively rel-
evant and nonlinear mode interaction can dominate even for detonations with a
very simple instability diagram as in figure 6. It is also worth mentioning that
in this example, the cell spacing depends on the initial data. If a pure mode of
instability with mode 4,6, or 8 and small amplitude was superimposed initially
on the ZND profile, regular cells with spacing 4,6, and 8 were observed through-
out the calculation even at the largest amplitudes. Thus, the cell spacing is not
necessarily unique on a given channel even though the unperturbed ZND profile
has a very simple stability diagram.

To further emphasize all of these points, we note that figures 15 and 19 involve
respectively random and systematic multi-mode initial perturbations of the same
ZND profile for a channel with W = 40. Also figure 11 involves perturbations of
the same ZND profile for a channel with W = 20. The characteristic cell sizes that
emerged from the numerical simulations in all of these cases had sizes between
8 and 11. This is similar to the behaviour in actual experiments where a nearly
characteristic cell size often emerges on sufficiently wide channels. Nevertheless
our numerical experiments with an appropriate pure single mode of instability
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for the initial data indicate that other nonlinear cells with other spacings are
possible and are dynamically stable.

6. Concluding remarks

In this review, we have stressed the symbiotic interaction between asymptotic
and numerical ideas in simpler models in improving our understanding of the
physical phenomena of unstable detonations. An obvious direction for future re-
search is to assess the effects of more complex and realistic chemistry models
on the theories for detonation instability and to design numerical codes to deal
efficiently with them.

The authors thank their collaborators and friends, Victor Roytburd and Phil Colella, for gener-
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gure 10. Sequence of six snapshots of the flow field through half a cell cycle (increasing time
om left to right, shock moving to the right) with, from top to bottom, pressure, tempera-
ire, vorticity and reactant mass fraction. In this sequence and similar sequences to follow, the
ymputational solution is plotted twice vertically for each variable, using the periodic boundary
nditions. In the post-shock domain, the grey scale varies linearly between white (minimum)
1d black (maximum), while the uniform flow field ahead of the shock is always assigned the
slour white. ET = 20; go = 2; f = 1.1; width is 5.7.
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Flgllre 14. Snapshots of pressure (top left), density (top right), reactant mass fraction (bottom
~ left) along with the corresponding wave diagram (bottom right). The detailed multiple Mach
stem structure in the wake of the leading front is in surprising agreement with the experimental
results of Voitsekhovskii et al. (1966). Following their notation, M is the Mach stem, I is the
ncident shock, A is the triple point, AB is the reflected shock, B is also the triple point for the
secondary Mach stem configuration, BC is the transverse wave segment, AD is the slip line,

DK is part of a centred rarefaction wave. Most of the reaction takes place between the leading
shock and the dashed line.

THE ROYAL A
SOCIETY |

0

PHILOSOPHICAL
TRANSACTIONS
F



http://rsta.royalsocietypublishing.org/

